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Unsteady separated flow behind an inclined flat plate is numerically studied through 
the use of the discrete-vortex approximation, in which the shear layers emanating 
from the edges of the plate are represented by an array of discrete vortices introduced 
into the flow field a t  appropriate time intervals at some fixed points near the edges 
of the plate. The strengths of the nascent vortices are chosen so as to satisfy the Kutta 
condition a t  the edges of the plate. Numerical calculations are performed for a plate 
at 60" incidence impulsively started from rest in an otherwise stationary incompressible 
fluid, by systematically changing the distance between the location of the nascent 
vortices and the edges of the plate. The temporal changes in the drag force, the rate of 
vorticity transport a t  both edges of the plate and the velocity of the separated shear 
layers are given together with the flow patterns behind the plate on the basis of this 
model. The results of the computation show that the vortex street behind the plate 
inclines as a whole towards the direction of the time-averaged lift force exerted on the 
plate. It is also predicted from the calculations that the vortex shedding a t  one edge 
of the plate will not occur at the mid-interval of the successive vortex shedding at the 
other edge. The predicted flow patterns are not inconsistent with a few experimental 
observations based on the flow-visualization technique. 

1. Introduction 
The main method of calculating unsteady fully separated flows over two-dimensional 

bluff bodies at sufficiently large Reynolds numbers makes use of a discrete-vortex 
model, in which the shear layers emanating from the separation points on the surface 
of the body are represented by an array of discrete vortices introduced into the flow 
field a t  appropriate time intervals a t  some points near the separation points. The 
motion of the shear layers in time is then approximated by the evolution of the arrays 
of discrete vortices. The limitations and usefulness of the discrete-vortex approxima- 
tion were demonstrated by Clements & Maul1 (1975), who also gave an extensive list 
of the previous investigations in this category. One of the most crucial points in the 
calculation may be the determination of the position and strength of each new vortex 
introduced into the flow in the vicinity of the separation points. These vortices will 
hereafter be referred to as the nascent vortices. 

This model was mainly applied in the past to the flow behind circular cylinders. 
However, since the separation points of the shear layers from the cylinder fluctuate 
in a manner which is not well understood as yet, the previous investigators had to make 
various assumptions about the separation points in their calculations of the flow. In 
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this sense the circular cylinder is not necessarily an appropriate shape with which to 
investigate the potentiality of the model of discrete-vortex approximation. This fact 
led some investigators to calculate the flow around bodies with fixed separation points 
for the purpose of obviating the need for any assumptions about the separation 
position. Clements (1973) and Clements & Maull (1975) made extensive studies of the 
flow behind a bluff plane-based body of semi-infinite length having right-angle corners 
between the sides and the rear face. Clements & Maull (1 975) also applied the discrete- 
vortex model to a bluff-based body with suitable modifications to take account of the 
effects of base bleed, forced vortex shed-, a base cavity and a plane solid wall 
behind the base. Kuwahara (1973) and Sarpkaya (1975) were concerned with an 
inclined flat plate at various angles of attack. 

The methods of Kuwahara and Sarpkaya uae the Kutta condition to obtain a rela- 
tion between the positions and strengths of the nascent vortices. Kuwahara introduced 
the nascent vortices a t  two fixed points near the edges of the plate, their strengths being 
determined from the Kutta condition. Therefore this method may be called the method 
of fixed positions of the nascent vortices and will hereafter be referred to as MFP. 
It should be noted that Clements & Maull (1975) also employed MFP in some cases, 
other calculations being performed by the Z / a t  = 477; method, as they call it, where 
r and t will be defined just below and U, is the velocity in the plane of the rear face 
of the body a short distance out from the separation point. Obviously the positions 
of the nascent vortices are the crucial parameters in MFP. Sarpkaya’s procedure, 
on the other hand, determines the strengths of the nascent vortices from the relation 

where is the vorticity shed into the wake, t is the time and a h  is interpreted as the 
velocity in the shear layers calculated by ueing the average of the transport velocities 
of four vortices in each shear layer. The positions of the nascent vortices are chosen 
so as to satisfy the Kutta condition at the edges of the plate and they can move slightly 
with time. As far as the positions of the nascent vortices are concerned, this method 
may be classified as the method of variable positions of the nascent vortices and will 
hereafter be referred to as MVP. The number of disposable parameters is reduced to 
a minimum inMVP and in this sense MVP may be superior to MFP. Moreover, Sarpkaya 
argues that the oscillation of the point of appearance of the nascent vortices is vital 
to the continuation of oscillations in resistance and is coupled with the manner in 
which the vortex sheets roll up. Sarpkaya also argues that MVP simulates in a satis- 
factory manner the mechanism of feedback from wake fluctuations to the fluctuations 
in the rate of circulation, while M F P  does not. 

However, it is the authors’ opinion that there is still a problem connected with the 
relation (1) which is assumed in MVP. The rate at which the vorticity is shed into the 
wake is closely approximated by 

where rmax and rmin represent the velocities a t  the outer and inner edges of the shear 
layer. Comparison of ( 1 )  with (2) reveals that MVP employs the assumption Ush = PI,,,, 
which could not generally be acceptable in view of the velocity profile in the actual 
shear layers. Furthermore, Sarpkaya’s argument that the oscillation of the positions 
of the nascent vortices is vital to the continuation of oscillations in resistance cannot 
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be taken as conclusive. It is true that the configuration and vorticity of the shear layers 
fluctuate in accordance with fluctuations in the wake. However, since the separation 
points on the flat plate are fixed at both edges, the fluctuation of the shear layers will 
not necessarily lead to the fluctuation of the positions of the nascent vortices. In this 
respect it is a pity that Clements (1973) and Clements & Maul1 (1  975) treated a bluff 
body for which the drag force could not be defined. As will be shown later, a periodic 
variation of the drag force on an inclined flat plate can actually be obtained by means 
of MFP. 

The results of Sarpkaya demonstrated in detail the kinematic and dynamic charac- 
teristics of the flow behind an inclined flat plate which can be calculated for various 
angles of attack on the basis of MVP, while the potentialities of MFP have not yet been 
studied to the same extent as those of MVP in this typical case of an inclined flat plate. 
This situation, together with the fact that MFP is much easier to apply than MVP is, 
may warrant detailed examination of the unsteady separated flow around an inclined 
flat plate on the basis of MFP. The computational results given in Kuwahara's paper 
are limited to  the temporal variation of the drag coefficient of the flat plate in the 
incidence range 30-89" and to the evolution of the vortex pattern in the wake during 
an early stage of the flow development. An assessment of MFP would not be complete 
without the information cited below. 

(i) The Strouhal number. As pointed out by Sarpkaya (1975), the oscillations of the 
drag force calculated by Kuwahara (1973) do not show any definite periodicity, which 
would be related to the periodic vortex shedding from the plate. It is conjectured that 
this result is caused by an improper replacement of vortex clusters by equivalent single 
vortices in Kuwahara's calculation. 

(ii) Temporal variation of ar/at. Since the mean velocity Vmax at the outer edge of 
the shear layers is related to al?/at by Vmax = ( 2  ar/at)4, where the overbar implies the 
mean value over one cycle of the periodic vortex shedding, the value of ar/at gives 
a clue to estimating the back pressure of the plate. Moreover, the oscillation of aI'/at 
will permit the determination of the Strouhal number. 

(iii) The relation between the position of appearance of the nascent vortices and the 
resulting flow characteristics and forces. This relation can be found by systematically 
changing the distance between the separation point and the position of the nascent 
vortices. 

(iv) Vortex patterns in the wake during the stage of steadily periodic vortex 
shedding. The periodic flow patterns cannot be predicted from vortex patterns in an 
early stage of the flow development such as those shown in Kuwahara (1973). 

(v) The relation between the phase of the vortex shedding and the magnitude of 
the oscillating force exerted on the plate. 

The main purpose of the present paper is to clarify the kinematic and dynamic 
characteristics of the flow over an inclined flat plate which can be calculated on the 
basis of MFP, with special reference to the characteristics described above in (i)-(v). 
Among the results obtained, it should be mentioned that MFP actually yields periodic 
variation of the drag force. It is also found that some aspects of the vortex pattern in 
early stages of the flow development show better agreement with the few experiments 
in the case of MFP than in the case of MVP. 
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2. Mathematical formulation of the model 
The velocity of any one of the vortices is the sum of the two-dimensional irrotational 

potential flow around the plate and the velocity induced at  the vortex position by all 
the other vortices. These velocities can conveniently be obtained by the introduction 
of a transformation plane in which the plate becomes a circle. 

The transformation from the physical plane z = x+iy to the transformed plane 
Z = X + i Y  is given by 

z = i e - i a ( Z  - a2/Z) ,  

where a and a are real constants. The velocity components in the x, y and X, Y direc- 
tions will be denoted by u, v and U ,  V respectively. The circle of radius a with centre a t  
the origin of the Z plane, i.e. Z = aeie (0 < 8 < 2n-), is transformed into an inclined 
A at  plate of length 4a in the physical plane described by 

(3) 

y = -xtana.  (4) 

If there exists a free stream in the direction of the x axis, the angle of attack of the 
plate will become a. The leading and trailing edges of the plate, i.e. Sl and S,, are 
then located a t  

which correspond to 

in the transformed plane. In  what follows, the suffixes 1 and 2 will refer to the leading 
and trailing edges of the plate. The two-dimensional irrotational potential flow around 
the plate is described by a complex flow potential W, of the form 

zs = - 2 a e - i a ,  zs, = 2 a e - i a ,  ( 5 )  

Zs, = ai, ZsB = - ai (6) 

(7) W, = i e-ia u,(z - e2ia 2 a /Z), 

where U, is the velocity of the approaching free stream. 
The points S, and 8, are the separation points of the flow over the plate, and the 

shear layers emanating from these points yield a distribution of vorticity behind the 
plate which is approximated by a system of rectilinear vortices in the discrete-vortex 
model. The vorticity shed from the leading edge is represented by vortices rotating 
clockwise (called #,-vortices), while that shed from the trailing edge is represented by 
vortices rotating counterclockwise (called 8,-vortices). Let r l k  and Z,, denote the 
circulation and location in the transformed plane of the kth Sl-vortex. Also let - r2, 
and Z,,  denote the circulation and location of the kth S2-vortex. The complex flow 
potential WLN) which describes the flow induced by the S,- and S,-vortices is then 
given by 

Ni wiN = i ( 2 n ) - ' r l k  log ((2 - z , k ) / ( z  - a 2 / z F k ) }  
k= 1 

N .  

where Nl and N, are the numbers of 8,- and 8,-vortices in the flow field and an asterisk 
indicates a complex conjugate. 

In MFP, another two vortices (nascent vortices) with strengths of I?,, and - r,, are 
introduced a t  the points Z,, and Z,,, which are located in the vicinity of the separation 
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points, in order to satisfy the Kutta condition. The complex velocity potential w(,) of 
the nascent vortices is given by 

Wk0) = i(27r)-l rloiog ((2 - Z,,)/(Z - a2/2,*,)} 

-i(27r)-l ~ 2 0 1 ~ g { ( Z - Z , o ) / ( Z - a 2 / Z , * o ) } .  (9) 

The tangential separation at the edges of the plate (Kutta condition) can be realized 
by requiring 

where 

Equation (10) can be reduced to the following equations which permit determination 
of the strengths of the nascent vortices in MFP: 

dW/dZ=O a t  Z =  ka i ,  (10) 

(11) w = w, + w p  + w:,. 

A,(ai) rlo - A,(ai) rz0 = 2nB(ai), 

A,( - ai) rl0 - A,( -a;) rz0 = 2nB( - ai), 
(12a) 

(12b) 

where the functions A,, A ,  and B are defined by 

A,(Z) = i{(Z - Zlo)-l - (2 - a2/2;lb)-1}, 

A,(Z) = i ( ( Z  - Z2,J-1 - (2 - a~/Z,*o)-l}, 

B(2)  = - {(dW,/dZ) + (d Wim/dZ)}. 

The velocity of the kth Xj-vortex, wherej = 1 or 2, in the physical plane is given by 

In view of the relation obtained from ( 3 ) ,  

(13) can be written in the form 

is the velocity of the kth Sj-vortex in the transformed plane. 
The time development of the system of vortices is calculated from the relation 

z j k ( t + a t )  = Z j k ( t )  +4{3(Ujk+ivjk)t- ( U j k + i v j k ) t - d t } ~ + o ( a t 3 ) ,  (16) 
where 6t is a small time increment. A time marching scheme of second-order accuracy 
is employed in this calculation in order to keep the accumulation of errors in moving 
the vortices as small as possible. Estimation of the accumulation of errors will be 
discussed in 0 3 . t  Movement of vortices in accordance with (16) will automatically 

t A referee expressed concern over the accumulation of errors and the unstable perturbations 
that can develop in any time marching scheme. An order-of-magnitude estimation of the 
accumulation of errors may be possible, while the onset of the unstable perturbations could not 
be predicted a priori. However, the results of the computation seem to show that significant 
unstable perturbations did not occur on large scales in the time marching scheme employed in 
this investigation. 
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yield periodic vortex shedding from the edges of the plate and the resulting formation 
of a KArm&n vortex street behind the plate. 

The oscillating forces exerted on the plate can be calculated from the generalized 
Blasius theorem 

in which B and 2 represent the drag and lift forces on the plate and p is the density 
of the fluid. On substituting (1  1)  into (17) and carrying out the integrations, one finally 
obtains 

2 N5 
B- ix  = x ( -  I)j+lip r j k ( U j k - i v j k )  

i= 1 k=O 

As demonstrated by Sarpkaya (1975)) there is no force acting along the plate since 
the velocities at both the leading and the trailing edge are rendered finite by satisfying 
the Kutta condition at  both edges. Accordingly, one will have 

B/Z = tanar. (19) 

The forces B and 2 may be expressed in terms of the drag and lift coefficient, defined as 

3. Numerical procedure 
In the present calculation the fluid is assumed to be set in motion impulsively from 

rest. This situation can be realized experimentally by moving the plate impulsively 
in an otherwise stationary fluid. Since the actual flow is expected to leave the edges of 
the plate tangentially, it  is reasonable to choose the positions of the nascent vortices in 
the plane of the plate and a t  a short distance downstream of the separation points. 
The same choice of the positions of the nascent vortices was also made by Kuwahara 
(1973)) Sarpkaya (1975) and Clements & Maul1 (1975). In  the present calculation the 
distance a, between the separation point and the location of a nascent vortex is taken 
to be the same at both the leading and the trailing edge of the plate. Although the 
distance a, could be different at the two edges, the same distance is employed here in 
the interests of making the number of disposable parameters as small as possible. 

Since a large number of vortices exist in the flow field, it  is probable that some 
vortices attain small separations and produce large velocities at each other's positions 
because of the absence of viscosity. This was avoided in the present calculation by 
employing a stream function of the following form, which was originally suggested 
by Chorin (1973): 

(21) I (2n)-l r logr (r > a),  
P(r /a )  ( r  G a)  II.,= (( 

for each vortex. In this equation I? is the circulation of the vortex, r is the radial 
distance measured from the centre of the vortex and v is a cut-off length whose intro- 
duction is analogous to the introduction of a small viscosity which allows the vorticity 
in a point vortex to'diffuse. It is important to note that the introduction of a cut-off 
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does not affect the mutual interaction of distant portions of the vortex sheets. Further- 
more, Chorin (1973) argues that the results of the calculation are not sensitive to the 
exact choice of $u for r < a. The stream function qFU yields a circumferential velocity 
ve of the form 

The value of r was chosen as 0*05(2a)  by taking into account the values of similar 
parameters employed by previous investigators, including Gerrard ( 1967), Clements 
(1973) and Sarpkaya (1975). Coalescence of vortices in the manner which was described 
by Clements (1973) and Sarpkaya (1975) is not employed in the present calculation. 
It should be noted here that the discrete-vortex approximation cannot be expected 
to produce a meaningful model of the he-structure of the rolled-up vortex sheets even 
if the procedure described by (22) is employed in the movement of individual vortices 
in order to control the instabilities caused by the presence of the singularity at each 
potential vortex. However, excessive instabilities in the movement of vortioes can 
be avoidedby this procedure. The point is that one can obtain from the discrete-vortex 
model the general characteristics of large unsteady flow regions such as the clusters 
of vortices formed behind the plate. 

It is also probable that individual vortices approach too close to the rear surface of 
the plate and this causes them to have unreasonably high velocities along the plate 
owing to the presence of the image vortices within the circle in the transformed plane. 
These vortices were removed from the flow field whenever they came nearer to the rear 
face of the plate than a distance of 0-05(2a).  

The time step 6t was determined by repeating a few calculations with a single 
program with only the time step changed and in addition by referring to the results of 
the previous investigators already mentioned. The time step finally employed in the 
present calculation is 6t = St, = 0-O8(2a/Um). The kinematic and dynamic charac- 
teristics of the flow thus calculated showed only an insignificant difference from those 
obtained with 6t = @to. In  passing it should be mentioned that the optimum time step 
depends on the interval between the introduction of the new vortices into the wake, 
which will be denoted by &ti. The very small time step 6t = &6to adopted by Sarpkaya, 
(1975) was necessary because the interval 6t, = 56t was selected in his calculation. 
The value ati = 26t was adopted by Clements (1973) and also in the present calculation. 
This procedure is required in order to keep the computation time within reasonable 
bounds. 

In view of the computation time, it was also necessary to combine the point vortices 
in a given vortex cluster into an equivalent single vortex whose strength was the sum 
of the individual strengths and whose position was the centre of vorticity of the cluster. 
This procedure, which was originally adopted by Chaplin (1973) and Clements (1973), 
was used when a cluster passed beyond a downstream distance of about x / ( 2 a )  = 4. 

The accumulation of errors in moving the vortices in accordance with (16) will 
now be considered. As will be shown later in figure 1, hydrodynamic characteristics 
of the plate such as the drag force and the rate of vorticity shedding from the edges 
exhibit definite periodicities with respect to time, which are the result of the periodic 
vortex shedding from the plate. Since the shapes of these curves are little influenced 
by the replacement of the clusters of vortices by an equivalent single vortex in the 
region beyond x / ( 2 a )  = 4, it  might be reasonable to assume that the fine-structures of 
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a*/(2a) 
A a U,&/(2a) U,8ti/(2a) a / (2a)  -7 

60' 0.08 0.16 0.05 0.005 0.009 0.0125 0.025 0.05 

TABLE 1. Parameters employed in the present calculation. 

the vortex clusters in this region have only a negligible influence on the hydrodynamic 
characteristics of the plate. This assumption will imply that the unsteady hydro- 
dynamic characteristics of the plate are primarily determined by the structures of the 
pair of vortex clusters existing just behind the plate. Accordingly, it is sufficient 
to consider the accumulation of errors in one cycle of the periodic vortex shedding. Let 
7 denote the period of the vortex shedding. The accumulated error in the position of 
each point vortex, say 62, is then estimated to be of the order of 

62/(2a) = 0[(7/6tto) {um6t,/(2a))31. 

Since 7 2 14(2u/Um) (see figure 1 )  and St, = 0.08(2a/Um), one has 

62/(2a) = 0(0.09), 

which, in the authors' opinion, will not be large enough significantly to affect the 
form of the vortex-cluster formation. 

4. Discussion of numerical results 
Computations were made for the single angle of attack a = 60" by systematically 

changing the distance a, between the separation points and the positions of the nascent 
vortices. The parameters used in the calculations are summarized in table 1.  In  the 
authors' opinion, the fact that only one angle of attack is treated in this studj will not 
necessarily hinder one from understanding the characteristics of the flow calculated 
by MFP. The detailed discussion of results will be confined to the case uJ(2a) = 0.0125 
in the interests of space, and additional comments will be presented for other values 
of a,. 

Figure 1 shows the temporal variation of the drag coefficient, the rate of shedding 
of vorticity into the shear layers emanating from the leading and trailing edges of the 
plate and the convective velocities of the shear layers, defined in the same way as 
Sarpkaya (1975). All of the curves shown in figure 1 exhibit definite periodicities in 
accordance with the periodic vortex shedding from the plate. The periodicity in the 
drag force is particularly noteworthy in view of the fact that Kuwahara (1973) could 
not obtain any definite periodicity in his caluulation by MFP. The results of Kuwahara 
led Sarpkaya to conclude that the oscillation of the point of nascent vortices is vital to 
the continuation of oscillation in the drag force even in the case of an inclined flat plate. 
Now it is obvious that the absence of periodic changes in the drag force in Kuwahara's 
calculation may have its origin in the improper procedure of combining the point 
vortices into an equivalent single vortex and is not an intrinsic fault of MFP. In  this 
respect the work of Chaplin (1973)) who calculated the unsteady separated flow around 
a circular cylinder by introducing the nascent vortices at some fixed points near the 
surface of the cylinder should be mentioned. Since he obtained a periodic wave form 
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for the drag force, Sarpkaya's argument about the relation between the location of the 
nascent vortices and the drag-force oscillation cannot be justified. 

The maximum values of the drag coefficient are seen to occur at the times when the 
convective velocity &h of the shear layers approximately takes its maximum and 
minimum values, while in Sarpkaya's calculation based on MVP the maxima of CD 
appear when aI'fat approximately attains its maxima and minima. Since the relation (1) 
is assumed in MVP, the phase relation between the drag force and the convective 
velocity of the shear layers is found to be the same in both M F P  and MVP. It may be 
noted that (aI'/at), and (aI'/at), as calculated by M F P  take approximately the same 
values when the maxima of the drag coefficient appear. In  view of (2), this fact implies 
that the velocities at  the outer edges of the shear layers emanating from both edges of 
the plate become approximately the same at the time of the maxima of OD. Since it is 
difficult to measure the wave form of W / a t  or the convective velocity ofthe shear layers, 
the phase relation just described could not be compared with experiments. 

The wave forms of the drag coefficient and the rate of shedding of vorticity calculated 
by Sarpkaya on the basis of MVP are closely sinusoidal in the stages of steadily periodic 
vortex shedding behind the plate. However, as will be seen in figure 1, the wave forms 
of the corresponding quantities obtained by M F P  are not sinusoidal and 
amplitudes are much larger than those calculated by MVP. Since no experimental 
information about the amplitude of the unsteady drag force exerted on the plate at 
high Reynolds numbers is available to the authors, use will be made of a numerical 
solution of the Navier-Stokes equations which was obtained by Lugt & Haussling 
(1974) for a slender elliptical cylinder with an incidence of 45" to the approaching 
uniform stream, the Reynolds number based on the major diameter of the cylinder 
being 200. Even this sort of information, in the authors' opinion, will give some clue 
to the nature of the unsteady wave forms of the relevant hydrodynamic properties at  
much higher Reynolds numbers. The wave form of the drag coefficient plotted against 
time is neither sinusoidal in their calculation nor very close to that predicted by MFP. 
The peak-to-peak amplitude of the drag coefficient calculated by Lugt & Haussling 
is about 0.3 times the mean drag coefficient, while the ratio is 0.6 (a = 60°, aJ(2a) 
= 0.0 125) for M F P  and 0-1 (a = 50") for MVP. It is hoped that unsteady measurements 
in the future will reveal experimentally the wave forms of the oscillating drag force 
exerted on the plate. 

It is plausible that the large amplitude of the drag coefficient is due to the failure of 
the model to produce cancellation of vorticity during the formation of vortices. 
Consequently, the strengths of the vortex clusters formed in this model are larger and 
create greater fluctuating forces than those obtained by Sarpkaya and Lugt & 
Haussling. The inaccuracy of the present model in this respect may be primarily 
a result of the lack of proper representation of viscous diffusion and turbulent entrain- 
ment in the shear layers. 

A general trend of the wave forms of &B, aI'/at and &h like that shown in figure 1 
is also found in all calculations for other values of the parameter a, except for the 
case of us/(2a) = 0.005, in which periodic wave forms could not be obtained by MFP. 
It is observed that the amplitudes of the wave forms increase with increasing a,. The 
dependence of the mean values over one cycle of vortex shedding on the parameter a, 
will be discussed later. It may be worth while to mention that the relation (19) is 
satisfied with a very high accuracy. 
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0 

-ti 75.6 

78.0 

0 

FIGURE 2. Vortex patterns over one full cycle of steadily periodic flow. 0, clockwise vortices; 
+ , counterclockwise vortices. a = 60°, a,/(Za) = 0.0125. 
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FIGURE 3. (a) Sketch of vortex pattern behind the plate taken from figure 5 of Sarpkaya (1975). 
Approximate locations of vortices and the free-stream direction are indicated by the plus sign 
and an arrow respectively; a = 50°, t = 37*0(2a /U, ) .  ( b )  Vortex arrangements calculated by 
MFP; u = 60°, t = 30*6(2a/U,) .  

Figure 2 shows the evolution of the wake over one full cycle of steadily periodic 
vortex shedding and the replacement of vortex clusters by equivalent single vortices. 
It is evident that the vortex street behind the plate inclines as a whole towards the 
time-averaged lift force exerted on the plate. The same type of vortex pattern was 
also obtained for other values of a,. The inclination of the vortex street may be related 
to the phase difference between the vortex shedding from the leading edge and that 
from the trailing edge. Let the phase difference between two successive vortex sheddings 
from the leading edge be defined as 2n. In  an ordinary K&rmLn vortex street such as 
that formed behind a two-dimensional circular cylinder, the vortex shedding from 
the trailing edge will take place a t  a phase angle of n. However, as may be clearly seen 
in the wave forms of ar/at shown in figure 1, the calculated vortex shedding from the 
trailing edge occurs at a phase angle less than n. In  this connexion the analysis of 
Maue (1940), which presented a generalization of the KLrmLn vortex street, should be 
mentioned. Maue considered a staggered vortex street in which each vortex in one 
row was not exactly opposite to the centre of the interval between two consecutive 
vortices in the other row and demonstrated that this vortex arrangsment was stable 
with respect to two-dimensional infinitesimal disturbances. The velocity induced 
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at any vortex in Maue's vortex street by all the other vortices has components both 
parallel and normal to the approaching flow, so that the axis of Maue's vortex street 
is not parallel but inclined to the direction of the flow. 

As far as the authors are aware, no experimental verification of Maue's vortex street 
has yet been reported in the literature. Struck by the results of the calculation, the 
authors re-examined the experimental data available. Figure 3 (a) shows a sketch of 
the vortex pattern behind a plate at 50' incidence at a time t = 37*0(2a /U, )  after the 
impulsive start of flow, which was taken from a photograph by Sarpkaya (1975).  
Approximate locations of the vortices and the approximate direction of the free stream 
are indicated in figure 3 (a). The calculated flow pattern which approximately corre- 
sponds to the same phase of vortex formation as the experimental one is shown in 
figure 3 ( b ) .  A comparison of figure 3 (a) with figure 3 ( b )  reveals that the agreement 
between the positions of the vortex clusters predicted numerically and those observed 
experimentally is fairly good except for the rightmost cluster, especially with regard 
to the inclination of the axis of the vortex street and the phase difference in the vortex 
shedding from the leading and trailing edges of the plate described above. It should 
be pointed out that the said inclination of the vortex-street axis and phase difference 
in the vortex shedding are not seen in the vortex patterns calculated by Sarpkaya 
through the use of MVP. As further information about the vortex patterns in earlier 
stages of the development of the flow, figures 4 and 5 (plates 1 and 2 )  show photographs 
of the vortex patterns behind an inclined flat plate at incidences of a = 50" and 60" 
which were taken by Takahashi (1976) by means of flow visualization with aluminium 
powder. Although the time elapsed since the impulsive start of the flow cannot be 
identified in this experiment, the rightmost vortices on the lower side are the first 
vortices shed into the wake for each angle of attack. Both inclination of the vortex- 
street axis and a phase difference in the vortex shedding may be observed in these 
photographs, especially in the case a = 50". 

Figure 6 (plate 3 )  shows a vortex pattern in the wake behind a plate at a = 60" in 
which the vortex shedding is believed to be steadily periodic (Takahashi 1976). 
Although the inclination of the vortex-street axis may be less clear in this case than in 
figures 2, 3 (a) ,  4 and 5 ,  it  is not necessarily impossible that a slight inclination exists. 
On the other hand, the aforementioned phase difference in the vortex shedding between 
the leading and trailing edges of the plate may be more clearly observed. However, 
since these properties are not significant enough to endure critical eyes, it is possible 
to say that they were brought about by some undefined perturbations to the vortex 
street. It should be remarked here that the phase difference in the vortex shedding and 
the inclination of the vortex-street axis may have their origin in the use of the same 
distance a, of the nascent vortices from both the leading and trailing edges of the plate 
in the present calculation, This situation will explain why the results of Sarpkaya 
(1975) did not show the said properties related to the vortex shedding, because the 
location of nascent vortices is adjusted to satisfy the Kutta condition and slightly 
changes with time, according to the various stages of the formation of the vortex 
clusters. However, what is shown by the flow-visualization photographs deserves 
attention, and it is hoped that more detailed experimental studies in the future will 
be made to check the predictions of the present calculation. 

Despite the absence of turbulent entrainment in the discrete-vortex model, the 
length of the formation region (Gerrard 1966) suggested by figure 2 is certainly much 
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a*1(2a) 0.005 0.009 0.0125 0.025 0.05 

1.68 2.38 2.66 3.40 3-72 
U3arlat)I 1.02 0.90 0.97 1.26 1.41 
u;a(arlat), 1.04 0-78 0.90 1.19 1.08 
U,2(arlat), 1.03 0.84 0.94 1.23 1-24 
VIQaxl urn 1.43 1.30 1.37 1.57 1.58 
cPb  - 1.04 - 0.69 - 0.88 - 1.46 - 1.50 

- - 1.14 - - 
- 0.14 0-14 0-13 0.11 st 

cD - 

~ B h l ~ c U  

TABLE 2. Summary of main results of the present calculation. 
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I 1 1 I 0.5 I 
0 0.01 0.02 0.03 0.04 0-05 

a,/(2a) 

FICWRE 7. Variation of time-averaged drag coefficient CD and the rate of shedding U;a(X’/at) ,  
of vorticity into shear layers with respect t o  a,. a = 60”. A, CD; 0, U,z(aI’/at),. 

smaller than that which can be estimated from the few flow-visualization photographs 
for a normal flat plate (Page & Johansen 1927; Goldstein, 1965, $241).  This may 
result from the sensitivity of the separated shear layers to perturbations, which is 
increased by representation of the layers by a single line of potential vortices. Each 
shear layer is therefore less stable in position and more easily deflected inwards by 
the cross-fl ow associated with the previously growing vortex of opposite sign. Con- 
sequently, the shear layers cross the wake axis close to the plate and the formation 
length becomes unrealistically small. 

The effects of the parameter a, on the time-averaged characteristics of the flow 
around the plate over one cycle of steadily periodic vortex shedding will now be 
described. Table 2 summarizes the main results, while figure 7 shows the variation of 
the time-averaged drag coefficient C, and the vorticity shedding rate (ar/at), with 
respect to a,, where the overbar implies the mean value and the suffix m the arithmetic 
average of the values at the leading and trailing edges of the plate. In the range of the 
parameter a, employed in the present calculation, the mean drag coefficient C, 
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monotonically decreases with decreasing a,. Since the value of C, obtained experi- 
mentally for a = 60" by Fage & Johansen (1927) is 1.5, the results obtained numerically 
by MFP are larger than the experimental one by factors of from 1.1 (aJ(2a) = 0-005) 
to 2.5 (uJ(2u) = 0.05). In  this connexion it should be remarked that the mean drag 
coefficient calculated for a = 60" by Sarpkaya (1975) was about 25% larger than that 
obtained experimentally. Accordingly in this respect MVP yields better agreement 
with experiments than MFP does, although a considerable difference still exists 
between the calculated results and experiments even in the case of MVP. The larger 
deviation from experiments of the mean drag coefficient in MFP may be explained by 
larger accumulation of vorticity in the vortex clusters formed behind the plate. As an 
example, consider the case aJ(2u) = 0.0125 in table 2. The Strouhal number of vortex 
shedding, which will be discussed again later, is found to be 0.14 for MFP, while that 
for MVP is 0.178. Since the value of U;n(ar/at)m is 0.94 for MFP and 0.99 for MVP, the 
accumulation of vorticity in a typical vortex cluster will be larger in MFP by a factor 
of (0.94/0.99) (0.178/0.14) = 1.21 than in MVP. This factor could be compared to the 
ratio of the mean drag coefficients obtained by MFP and MVP, viz. 2-66/1-95 = 1.36 
(see table 1 of Sarpkaya 1975). In fact Sarpkaya mentions that an appropriate reduc- 
tion in the strengths of the vortices, particularly in the near wake, does bring about 
a reduction in the mean drag coefficient. 

As may be seen in figure 7, the rate of shedding of vorticity (ar/at), attains a mini- 
mum in the neighbourhood of uJ(2a) = 0.09 and becomes practically constant in the 
range u,/(2a) 2 0.025. The time-averaged value of the velocities a t  the outer edges 
of the shear layers calculated from Vmax = (2 aF/at)i is 1*37Um when a,/(2a) = 0.0125. 
This value is only 3% smaller than that (V,,, = 1-41Um) measured by Fage & Johansen 
(1927). As remarked earlier, Vmax is not equal to the mean convective velocity of the 
shear layers Gh, in MFP, while it is in MVP. Ghm is found to be 1-14U, in the case 
uS/(2u) = 0.0125, which is about 17% smaller than Vmax. The absence of figures in the 
last column but one of table 2 except for uJ(2u) = 0.0125 was caused by the fact that 
the corresponding data on magnetic tape had been eliminated at the time of the 
calculation of Ghm. 

If it  is assumed that the total kinetic energy a t  the outer boundary of the shear 
layers is equal to that in the undisturbed stream and that the pressure throughout 
the shear layers is the same as that at  the base of the plate, the time-averaged base- 
pressure coefficient can be written as 

cpb = 1 - (Vrnax/Um)', (23) 
- 

which is equivalent to the relation cpb = 1 - 2UZ2 arpt employed in Clements & Maul1 
(1975). The values of c,b calculated from this equation are included in table 2. Since 
the experimental base-pressure coefficient obtained by Fage & Johansen (1927) is 
- 1-33 for a = 60", MFP is expected to yield the same value of C,, somewhere in the 
range of us/(2u) between 0-0125 and 0.025. It may be worth mentioning here that the 
value of Vmax/Um determined from the experimental back pressure of Fage & Johansen 
is 1.53 for a = 60", while velocity measurements yield Vmax/Um = 1-41 as described 
just above, which corresponds to c,b N - 1-0 in view of (23). This experimental 
evidence implies that the theoretical value of Vmax/Um should be compared with 
( 1  - C,,)*, in which Cpb is the experimental base-pressure coefficient. In this respect 



238 

0.15 

r;j 

0.1 

0 0 5 -  

M .  Kiya and M .  Arie 

1 
- 

----o - - 

I I I I 

a,/(2a) 
FIGURE 8. Variation of Strouhal number St with a,(& = 60'). -0-, present calculation; - 
St = 0.190, experiment by Abernathy (1962); ---, St = 0.178, calculation by Sarpkaya (1975); 
_-_ , St = 0.171, experiment by Fage & Johansen (1927). Note that the abscissa has no meaning 
for the last three curves. 

considerable errors still exist in the values of Vmax/U, calculated by MFP and MVP, in 
which Vmax/U, was found to be 1.41 for all angles of attack larger than 50". The in- 
accuracy of the models is caused by the lack of proper representation of viscous diffusion 
and turbulent entrainment in the shear layers. 

Since the periodicity of X'/at is quite significant as may be seen in figure 1, the 
Strouhal number St, defined by 

where f is the frequency of vortex shedding, can easily be caloulated and the results are 
also included in table 2. Figure 8 shows the variation of St with respect to a,. The calcu- 
lated Strouhal number is seen to be almost constant and equal to 0.14 in the range 
0.009 < as/(2u) < 0.0125. The Strouhal numbers obtained experimentally for a = 60" 
are 0.171 (Fage & Johansen 1927) and 0.190 (Abernathy 1962), the tunnel-height to 
plate-chord constriction ratio being about 14 in both cases. The calculated values of St 
are thus less than the experimental ones by 22-36%. On the other hand, Sarpkaya 
(1975) obtained St = 0.178 by means of MVP. Since the mechanism which determines 
the Strouhal number in the discrete-vortex model is not evident to the authors, the 
difference in St between MFP and MVP is not clear. However, it  is possible that the 
constancy of the locations of the nascent vortices destroys some aspects of the manner 
in which the vortex sheets roll up, as suggested by Sarpkaya (1975). 

The present calculation by MFP failed to yield defhite periodicities in the wave 
forms of Z / a t  and OD when uJ(2a) = 0.005. Furthermore, in this case the calculated 
vortex clusters are much less coherent than those for other values of a,, and in addition 
their positions are in poor agreement with the experimental observations. These facts 
may suggest that the distance a, = 0*005(2a) is too small for calculation by MFP. On 
the other hand, it is quite natural to expect that an upper limit on a, will exist. Table 2 
shows that one cannot obtain a single value of a, which yields satisfactory results for 

8t = 4af/U,, (24) 
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all the hydrodynamic characteristics of the plate. Consequently an optimum value 
of a, should be determined according to the information which is required. In view 
of the values of C,, V,,, and St shown in table 2, the two distances uJ(2a) = 0.025 
and 0.05 may be judged to be too large. If reasonable results for the Strouhal number 
and the nature of the vortex-cluster formation are to be obtained, the distance a, 
should be in the range 

(25 )  

In this connexion, the results of Clements & Maul1 (1975), who investigated the vortex 
shedding behind a square-based body by MFP, deserve attention. Choosing the 
positions of the nascent vortices in the planes of the body and a t  a short distance 
downstream of the separation points, they discovered that, if it  was at a distance of 
between 0.01 and 0.03 times half the base height, the exact position of the nascent 
vortices did not affect the Strouhal number of the vortex shedding, nor the nature 
of vortex-cluster formation. Therefore their optimum range of the distance overlaps 
that described by (25). It is possible that the appropriate range of a, will depend on 
the time step at. Nevertheless no detailed examination of this point was made in the 
present study. 

0.005 < u,/(~u) < 0.0125. 

5. Conclusions 
In the present paper the vortex shedding behind an inclined flat plate has been 

numerically studied through the use of the discrete-vortex approximation, in which 
the shear layers emanating from the leading and trailing edges of the plate are repre- 
sented by an array of discrete vortices introduced into the wake at appropriate time 
intervals a t  some fixed points near the edges of the plate. The positions of appearance 
of the nascent vortices were chosen in the plane of the plate and at a short distance 
downstream of the separation points. The strengths of the nascent vortices were 
determined from the Kutta condition. Numerical calculations were performed for an 
inclined plate at  60" incidence set in motion impulsively from rest by systematically 
changing the distance between the positions of appearance of the nascent vortices and 
the edges of the plate. The results were compared with the similar calculations by 
Kuwahara (1973) and Sarpkaya (1975). 

The main results can be summarized as follows. 
(i) The distance a, between the position of the nascent vortices and the edges of the 

plate should be in the range 0-005 < a,/(2a) < 0.0125, where 2a is the half-length of 
the plate, in order that this distance does not affect either the Strouhal number of 
vortex shedding or the nature of vortex-cluster formation. 

(ii) The calculated Strouhal number of steadily periodic vortex shedding behind the 
plate takes a constant value of about 0.14 in the above range of a,, which is smaller than 
the experimental values by 22-36%. 

(iii) In  the range of a, described in (i), the time-averaged drag coefficient of the 
plate over one cycle of steadily periodic vortex shedding monotonically increases 
with increasing a,, and is about 70% higher than that obtained experimentally when 
u,/(~u)  = 0.0125. 

(iv) The steadily periodic wave form of the drag force can be obtained by a discrete- 
vortex approximation in which the positions of appearance of the nascent vortices 
are fixed in the vicinity of both edges of the plate. Accordingly, the argument of 
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Sarpkaya (1975) that oscillation of the point of appearance of the nascent vortices is 
essential to the continuation of oscillations in the drag force is not justified. 

(v) The present computation predicts that a vortex will not be shed from one edge 
of the plate at the mid-interval between two consecutive vortices shed from the other 
edge of the plate. In  accordance with this fact, the calculated vortex street behind the 
plate inclines as a whole towards the side of the time-averaged lift force exerted on 
the plate. These predictions are found to be not inconsistent with a few flow-visualiza- 
tion photographs taken at earlier stages of the flow development. The results of the 
calculation by Sarpkaya (1975) do not show the aforementioned phase difference in the 
vortex shedding nor inclination of the vortex-street axis. 

(vi) With regard to the predictions of the Strouhal number and the drag coefficient, 
the method of Sarpkaya yields better results than that with a fixed point of introduc- 
tion of the nascent vortices considered in this study. 

The authors are grateful to a referee for helpful comments which have led to an 
improved discussion of the paper. 
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FIGURE 4. (a) Photograph of vortex pattern in the wake of a plate set a t  an angle of attack of 50" 
a t  an early stage of flow development; Reynolds number = 1050. (b )  Approximate 1oca.tions of the 
vortices arid the free-stream direction. Although the time elapsed since the impulsive start of 
flow is not identified, the rightmost vortex on the lower side is the first vortex shed into the wake. 
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FIGURE 5 .  (a)  Photograph of vortex pattern in the wake of a plate set a t  an angle of attack of 60" 
a t  an early stage of flow development; Reynolds number = 2120. (b )  Approximate locations of the 
vortices and the free-stream direction. Although the time elapsed since the impulsive start of flow 
is not identified. the rightmost vortex on the lower side is the first vortex shed into the wake. 
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FIGURE 6. (a) Photograph of flow pattern in the wake of a plate set a t  an angle of attack of 60" 
at the stage of steadily periodic vortex shedding; Reynolds number = 1540. (b) Approximate 
locations of the vortices and the free-stream direction. 


